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Some A -Stable Methods for Stiff Ordinary 
Differential Equations 

By R. K. Jain 

Abstract. This paper gives some A-stable methods of order 2n, with variable coefficients, 
based on Hermite interpolation polynomials, for the stiff system of ordinary differential 
equations, making use of n starting values. The method is exact if the problem is of the form 
y'(t) = Py(t) + Q(t), where P is a constant and Q(t) is a polynomial of degree 2n. 

1. Introduction. Many physical problems lead to ordinary differential equations 
with a property given by the following definition: 

Definition 1. A system of ordinary differential equations y'(t) = f(t, y), y(a) = y 
is said to be stiff if the eigenvalues of the matrix af(t, y)/Oy have negative real parts 
at every time t and differ greatly in magnitude. 

A linear k-step method with constant coefficients for the numerical solution of 
ordinary differential equations is given by 

k k 

(1.1) A ciiyn+i -= h E PiY+i, where ak d O and laol + Ijol > 0. 
-O 0-o 

Stiff equations present a difficulty in numerical integration, since the integration 
interval is determined by the fastest rate and the region of integration is determined 
by the slowest rate. Conventional methods of the form (1.1) are unstable if the step 
size used is much greater than the smallest time constant. Dahlquist [1] introduced 
the concept of A-stability in connection with the integration of stiff systems of dif- 
ferential equations. A-stability is defined as: 

Definition 2. A k-step method is called A-stable if all the solutions of (1.1) tend 
to zero as n -a ), when the method is applied with fixed positive h to any differential 
equation of the form dy/dt = Xy, where X is a complex constant with negative real 
part. 

Dahlquist [1] has also shown that if (1.1) is to be stable for all X, such 
that Re (hX) < 0, then the order of the method cannot exceed two. 'ie also showed 
that the best method in this sense is the trapezoidal rule. In order to achieve greater 
accuracy and order, we study nonlinear methods (see Treanor [2]) or methods with 
variable coefficients. Norsett [3] derived a class of A-stable methods with variable 
coefficients of order n using Lagrangian interpolation polynomials passing through 
the n starting values. 

In this paper, we have derived an integration method of order 2n with variable 
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coefficients using Hermite interpolation polynomials passing through the n starting 
values. A proof that the present method is A-stable in the sense of Dahlquist [1] 
is included in Section 3. 

2. Derivation of the Method. Let the problem be defined by the equation 

(2.1) y'(t) = f(t, y), y(a) = TV 

over the interval I = [a, b]. Choose t E I and define t,,- = t -ih. It is assumed that 
the solution of (2.1) is known at the n starting values (i = 0, 1, * , n - 1). 

Instead of considering the equation y'(t) = f(t, y), we consider the function 
y'(t) + Py(t). The main steps in the argument are as follows: 

1. Approximate the function y'(t) + Py(t) by the Hermite interpolation poly- 
nomial T(t)atthepoints to__ i = 0, 1, , n -1. 

2. Integrate the exact differential equation y'(t) + Pyt) = T(t) between the limits 
t. to t4+1. 

3. Choose P as an approximation to -(Of/Oy)". 
4. Determine the order of the method and show that it is A-stable. 
Thus approximating the function y'(t) + Py(t) by the Hermite interpolation 

polynomial, we obtain 
n a 

(2.2) y'(t) + PY(t) = W hi(t)(fi + Pyi) + Em Afs(t)(j + Pfi) + TE, 
i-1 i-l 

where hi(t) and hi(t) are the standard Hermite functions of degree 2n (see Ralston 
[4, p. 62]), fi = f(ti, ys) and f = f'(ti, yi). 

=TE F F2nq(t)7r2(t), where F(t) = f(t) + Py(t), 

and a < t < b. 
Obviously, (2.2) is an exact differential equation. Integrating (2.2) from t. to 

tn, we obtain 

(2.3) yn= + (HiFj + TiF;)] + Rn, 

where 
rtn~~~~~l r~~~tn+i 

Hi= eP'hi(t) dt, Hi J eP /i(t) dt, 

P t n+ i r t n+1 (2 

Rn = | eP'F Q~)()r2(t) dt. =(2n)!J 

Since P is an approximation to -(Of/Oy)n for a single differential equation, a natural 
choice of P is 

(2.4) P = 
f f(tn, Yn-1) 

-n Yn-1 

For a system of equations, the choice of P may depend on the efficiency of the routine 
to evaluate &'-, where P is a matrix. A simple choice of P is the diagonal matrix 
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(2.5) p,, _fn _- f~ (t ..ns * *Yn-i, * Yn) (2.5) Pi i ~ ~ ~ i Yn Yn-I 

3. The A-Stability and Order of the Method (2.3). We shall show here that 
(2.3) is of order 2n and is A-stable. 

THEOREM. The method (2.3) is A-stable and of order 2n with the usual definition of 
A-stability given by Dahlquist [1]. 

Proof. Let f(t, y) = Xy, where X is a complex constant and Re X < 0. Thus, 
P = -X. Obviously, F, = fi + Py, = Xy, - Xy, is zero for every i. Similarly, 
F'= f' + Pf, = Xy' - Xy' is also zero for every i. Hence, (2.3) reduces to yn+, = 
eXkyn. Since Re X < 0, Yn 0 as n -* co for any fixed h and hence (2.3) is A-stable. 

Taking s = (t - t")/h, (2.3) can be rewritten as 

(3.1) yn+l = e + h i (HiF + 15 Ft)] + Rnp 

where 

Hi = f ePhh,(s) ds, R _ f eP hi (s) ds, i = 1, 2, * n, 

hn2n+ 1P e 1 
h= 2h !1 Ph1 eI F2n)(i)7r2(s) ds 

2n! e f F (t)'(s) ds + O(h 2n+2) 

.2n+1 
1 -Ph F(2n)(o 2(S) ds + O(h22) 

2n! JoF7r S+ ( 

= h2n+lePhF(2n)(,)A~ + O(h2n+2), 

where A., = (l/2n!) f 7r (s) ds and hence the method (2.3) is of order 2n. 

4. A Few Particular Cases. If we look at (3.1), we find that the integrations 
involved to determine Hi, ft and Rn are of the form 

in= feP( As)si ds, 

where N is a positive integer depending on n. The coefficients H. and ft. are of the 
form 

Hi= a,-h eph + h br1 J 
r Ph r-1 \Ph/ 

2n I lrp 2n (I\r 
, =E aPh ep + h I: or pD r Ph r- ih 

Taking a simple case n = 1, we have 

hl(t) = 1; hl() = t 7 ti; 1r(t) = t-t ; 

h1(s)= 1; hi (S) = s; 7r(s) = . 
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H1 = 
f e ds = 

I 
(e1 - 

1) 

1i =f seP ds = (I- 2 + 2 
H1 = o ~~Ph P h P h2 

A = f S2 ds = 1 

a, = 1; a2= 0; b1 = -1; b2= 0; 

a11; = a2 = -1; 1 = ?; #2 =1. 

Similarly, for n = 2, 

h1(t) = {1 + 2 
(t - ti)} (t -t2)2 

h2(t) = { 2 
- (t - t2)} (t -2t1) 

/i1(t) = h (t - -)(t t2 

h2(t)= =?(t - -t2), 

ir(t) = (t - 0 - t2). 

Using t - = hs, we obtain 

hl(s) = (2s + 3)s2, 

h2(s) (1 -_2s)(s + 1)2, 

hA(s) = (s + l)s2, 

h2(s) = (s + 1)2s, 

7r(s) = s(s + 1). 

The simple integration gives the required coefficients. Tht values of a,, br, a, si and 
A, are given in Table 1 for n = 0(1)4. 

5. Numerical Comparison. A simple example 

(5.1) Y'(t) = - 00ty2, Y(1) = 1/51 

has been chosen to show the advantages of the present method over the method 
developed by Norsett [3]. The exact solution of (5.1) is 

Y(t) = 1/(1 + 50t2). 

We have solved (5.1) with the method of Norsett and the present method for dif- 
ferent values of n and for different step sizes, on an IBM 360 in single precision. Some 
of the results are given in Table 2. Our results are closer to the exact solution, even 
when a smaller number of starting values are used. 
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TABLE 1-a 

n i a, a2 a3 a4 a5 ad a7 a8 

11 1 0 

2 1 5 -12 18 -12 

2 -4 12 -18 12 

3 1 10 -33 83 -148.5 168 -90 

2 9 -24 44 -48 24 0 

3 -18 57 -127 196.5 -192 90 

47 -550 10523 -8891 8620 -12020 10740 -4620 
41 3 9 54 18 9 9 9 9 

2 64 -240 728 -1734 3120 -3990 3240 -1260 

- 1009 2643 
3 -36 150 2 2 -2580 3540 -3060 1260 

-128 1360 -11296 8158 -13480 16070 -12360 4620 
3 9 27 9 9 9 9 9 

TABLE 1-b 

n i b, b2 b3 b4 b 1 b, b7 bs 

1 1 -1 0 

2 1 0 0 -6 12 

2 -1 0 6 -12 

3 1 0 0 -3.5 25.5 -78 90 

2 0 0 -8 24 -24 0 

3 -1 0 11.5 -49.5 102 -90 

4 1 0 0 - 8 238 400 3590 2040 1540 
3 9 3 9 3 3 

2 0 0 -13.5 121.5 -540 1380 -1980 1260 

3 0 0 0 -54 360 -1110 1800 -1260 

97 1691 940 6020 2580 1540 4 -1 0 6 18 3 9 3 3 
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TABLE 1-C 

n i a, a2 a3 a4 a5 a6 a7 a8 An 

1 1 1 - 1 1/3 
2 1 2 -5 8 -6 31/30 

2 4 - 8 10 - 6 

3 1 3 - 10 25.5 -46.5 54 - 30 869 
105 

2 18 -57 136 -228 240 - 120 

3 9 -24 48.5 -70.5 66 - 30 

47 452 769 752 1060 320 -140 3 
' " -3 9 6 3 3 630 

2 48 - 184 574 - 1416 2658 -3570 3060 - 1260 

3 72 -264 781 - 1813.5 3192 -4020 3240 - 1260 
152 1178 1624 1298 1510 4 16 - 6 3 - 380 -140 

TABLE 1-d 

n i 1 12 33 34 35 8 (37 (38 

11 0 1 

2 1 0 0 -2 6 

2 0 1 -4 6 

3 1 0 0 - 1 15 -24 30 

2 0 0 -8 48 - 120 120 

3 0 1 -6 39 - 36 30 

4 1 0 0 -2 20 - 34 31 - 180 140 

2 0 0 -9 171 -408 1140 - 1800 1260 2 

3 0 0 - 18 144 -582 1410 - 1980 1260 

-22 193 580 4 0 1 - -96 -240 140 
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TABLE 2 

h Y(t) Norsett's Method Present Method Exact 
n=3 n=2 

16 Y(10) .19995554(-3) .19996018(-3) .19996001(-3) 

1 Y(10) .19991486(-3) .19996310(-3) .19996001(-3) 
8 Y(20) .49994562(-4) .49997695(-4) .49997500(-4) 

1 Y(10) .19906134(-3) .20000938(-3) .19996001(-3) 
4 Y(20) .49940176(-4) .50000607(-4) .49997500(-4) 

6. Remarks. In order to apply (2.3), we need to know the first derivative of 
f(t, y). If the exact derivative is not available, the numerical differentiation may be 
used. But in such a case, we are not sure whether the order of this method is pre- 
served or not. It is also hoped that some generating functions and recurrence relations 
may be derived to obtain Hi, and Hi directly. 
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